As is customary with all my hobby projects, completion is illegal, so I look for improvements and additions.

Unable to fall asleep, I decided to take a break from scrolling twitter and play on the PC110. This is when I realized, of course, the keyboard is not illuminated and I could not type. So I wondered, can I integrate a light onto the lid as I have had on previous thinkpads.

The screen actually looks good. You can see the uneven backlight because I have it turned up quite high, showing an all black screen, in a dark room.

I have the shielding tape because the unpainted plastic was getting illuminated by the light as well from behind. If I move ahead with this, it will most likely have to go on the corner as space is very tight in the middle due to the latch.

I played with placing it other places further down near the keyboard, and while that can work it it would be difficult to conceal.

As I mentioned in my video, it is currently blue as I burned out the only white 0603 LED I had on hand, but I lots of red and blue from a previous project.

I will also thing is a nicer way to control the brightness of the display and toggle of the keyboard light, make sure i am making the best use of the limited options.

Up until now, to use a TFT display on the PC110 you need to run a program after boot. The original method is running CT65535.exe from Taka that updates the CT65535 registers as required which mostly works well except some XR values can be overwritten if you switch LCD/CRT with the Fn-Key and potentially some mode changes can cause unexpected issues. I then implemented an alternate method that updates the video bios in shadow memory and soft reboots. This method is almost as if the settings were from the factory and allows use of the Fn- key for CRT/LCD and ensures that it will work in all modes, however you still cannot enter Easy Setup and the change is lost on hard reboot. It was not much of an advantage over CT65535.exe, but the method of patching the binary bios image itself was a necessary step leading up to this flash updater.

Now that I have successfully managed to update the flash memory, I am able to apply the modifications directly which now allows full use of the system even Easy Setup.

I still need to do some additional work before I can make it available

  • Check that A/C power is connected and Battery is fully charged
  • Verify the bios is an expected bios
  • Check that no TSR is loaded that can interrupt the process.
  • Provide command switches to specify VGA-TFT, WVGA-TFT, DSTN (Origional)

Here is an idea (I had early on and remembered today), whereby if you change the brightness quickly multiple times within 2 seconds, it enters into a “custom” brightness mode. I flash the display 3 times to let you know that this mode has been entered.

A reminder why this could be useful. The PC110 allows three brightness levels, but only two when on battery power. So this would be way to access everything from the minimum 1% to the maximum 100% even while on battery power, if you are not satisfied with the default levels.

I will update the program to have a timer so the brightness of the display does not actually change until no key has been pressed for maybe half a second to avoid the display changing brightness while you are trying to enter “custom” mode.

I still need to take some measurements on current consumption vs light output to decide what the ideal low/medium/high values should be, and what “custom” levels should be included.

Power Default LevelsmilliWattsLuminosity
Low10%137
Medium50%809
High (A/C Power Only)100%1670
Custom Levels
1/100%0
2/102%32
3/108%147
4/1016%263
5/1024%399
6/1032%536
7/1048%798
8/1063%1061
9/1079%1313
10/10100%1670

I obtained the above power measurements by powering the PC110 from a bench power supply at 10.5VDC. The baseline power consumption was 4000mW with no battery installed and the screen electronics energized but the backlight off. With full backlight on the total consumption was 5600mW.

By comparison the OEM display consumption is 1418mW at low, 1733mW at medium and 2205mW at high.

In the previous design, I was reading the voltage of PIN3 of the PC110 30pin connector which is the original LCD driving voltage. It’s range is about 22V to 30V and is controlled by the contrast keys in I believe 256 steps. I was using two resistors to form a voltage divider to bring 30V down to ~3.3V for the ADC of the PIC. The problem is, it can take quite some time to go from 0% to 100% contrast and even still this only provides a voltage range of ~2.4V to ~3.3V, and the resolution of the ADC is low so the noise is a problem. The intention had been to have more than the standard (3) brightness levels, however in practice this methods is only useful if a high resolution ADC was used or other analog circuity was put in place to better scale the signal.

I have revised the PCB to instead use the original brightness signal located on PIN3 of the inverter wire.

Pinout of 4 pin inverter connector

PIN1 = ~10.5V (Inverter Supply)
PIN2 = GND
PIN3 = Brightness Control (25kohm Low, 10.5kohm medium, 5.4kohm full)
PIN4 = ENABLE (0V off, ~3.4V ON)

I have placed a 10kohm resistor from PIN3 to Vcc (3.3V), and the below measured voltage is as measured at Pin3.

IntensityPin3 Ohms to GNDMeasured VoltsADCThresholdPWM%
Low25k2.75213<2551%
Medium10.5k1.75135<15050%
High5.4k0.7558<100100%

The low and medium brightness is TBD, I will try to select the optimal values to pre-program.

High brightness is only available while connected to A/C. Although the PC110 has no issue providing the current for the LED backlight, it may have been designed to restrict full brightness on A/C because of the higher draw of the CFL backlight inverter.

Either way, the brightness between medium and high will not but massive in terms of light output, so it can be considered with this was you can switch between the lowest brightness, and the ideal brightness.

This is an example of what the process will look like.

work still in progress

  • Mechanical improvements to simplify assembly
  • Test different methods of painting to try and get a near factory finish
  • Look for some kind of printable transfer material to apply a logo
  • Further electrical testing, I have a unit that runs 24×7. Just generally looking for any potential issues that have gone unnoticed.
  • Bios patching methods

This is revision 2 of the bezel. It fits quite well, there are some additional changes I would like to make in relation to the fitment. The top might look slightly loose as I did not put in the metal plate for the upper latch as the hole is slightly misaligned and I need to fix it.

I am currently using an additional blank PCB and pieces of a PCB as retention clips for the display, while I decide if I should make a single retention piece that attaches to all of the standoffs to add rigidity, or just make small tabs.

As well the latest version of the PCB that is due to arrive later this week slightly moves the position of the connector to make the 30pin ribbon came lay more naturally without any tension when the back cover is on, although even how it is now is no issue. In fact I hope I have not moved it too far as this feels good compared to when I had the PCB hot glued into place on the previous hand modified prototype “1.5”.

I will also paint the interior of the bezel under the PCB with conductive paint to shield emitting noise.

The issue I described as “blue tint” turns out to have been a fault in my test system. I built another revision of the PCB including pads for capacitors, and it would seem I only needed to place a cap on the clock line to resolve the remaining signal integrity issues.

Current Status

  • Full VGA Clock (25.175MHz) without any pixel errors / artifacts
  • Full brightness control via the contrast keys
  • Less than 100µA draw on the 10.5V inverter supply while display is off.
  • All electrical load is on the inverter supply wires and not the fpc.
  • 250mA fuse to reduce risk of blowing the internal 650mA fuse in any unexpected failure modes.
  • Using the Hitachi transceivers maintains same electrical interface to the CT65535 as the OEM display. This may be an overkill step but it is working well so I am sticking with it.

Next Steps

  • Further verify there are no pixel errors at the higher clock speed.
  • Revise the PCB to simplify assembly and clean it up.
  • Update the 3d model for the new bezel to accommodate the new PCB.

Current Revision